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Abstract
The Rouse model is a well-established model for non-entangled polymer chains
and also serves as a fundamental model for entangled chains. The dynamic
behaviour of this model under strain-controlled conditions has been fully
analysed in the literature. However, despite the importance of the Rouse model,
no analysis has been made so far of the orientational anisotropy of the Rouse
eigenmodes during the stress-controlled, creep and recovery processes.

For completeness of the analysis of the model, the Rouse equation of
motion is solved to calculate this anisotropy for monodisperse chains and
their binary blends during the creep/recovery processes. The calculation is
simple and straightforward, but the result is intriguing in the sense that each
Rouse eigenmode during these processes has a distribution in the retardation
times. This behaviour, reflecting the interplay/correlation among the Rouse
eigenmodes of different orders (and for different chains in the blends) under
the constant stress condition, is quite different from the behaviour under
rate-controlled flow (where each eigenmode exhibits retardation/relaxation
associated with a single characteristic time). Furthermore, the calculation
indicates that the Rouse chains exhibit affine deformation on sudden
imposition/removal of the stress and the magnitude of this deformation is
inversely proportional to the number of bond vectors per chain. In relation
to these results, a difference between the creep and relaxation properties is
also discussed for chains obeying multiple relaxation mechanisms (Rouse and
reptation mechanisms).

(Some figures in this article are in colour only in the electronic version)

Contents

1. Introduction 608
2. Theoretical framework 609

2.1. Rouse equation of motion 609
2.2. Orientational anisotropy and stress 610

0953-8984/05/190607+30$30.00 © 2005 IOP Publishing Ltd Printed in the UK R607

http://dx.doi.org/10.1088/0953-8984/17/19/R01
http://stacks.iop.org/JPhysCM/17/R607


R608 Topical Review

3. Results and discussion 611
3.1. Monodisperse Rouse chain with N � 1 611
3.2. Binary blends of Rouse chains with N � 1 618
3.3. Monodisperse Rouse chains with small N 621
3.4. Difference between retardation and relaxation properties 628

4. Concluding remarks 633
Appendix A. Solution of equation (24) 633
Appendix B. Solution of equation (32) 634
Appendix C. Affine deformation and effective strain for the bond vector 634
References 636

1. Introduction

The Rouse model, the simplest bead–spring model, is well established for flexible polymer
chains [1–6]. This model has been frequently applied to non-entangled chains in concentrated
systems. The model also serves as a fundamental ingredient in the description of the
entanglement dynamics: the tube model for entangled chains analyses the motion of the Rouse
chain confined in a tube-like regime for calculating various kinds of dynamic properties [4–6].
Thus, the Rouse model is one of the most important models in the field of polymer dynamics.

In this model, the mechanical stress reflects the orientational anisotropy of the chain
segments that is often expressed in terms of the Rouse eigenmodes. The relaxation
modulus G(t) under a step shear strain is easily calculated from these eigenmodes, and
all linear viscoelastic properties are straightforwardly calculated from this G(t) within the
phenomenological framework of linear viscoelasticity: for example, the complex viscosity η∗
is given by the Fourier transformation of G(t), and the creep compliance J (t) is calculated
through a convolution relationship [2, 4, 7],∫ t

0
dt ′ G(t − t ′)J (t) = t . (1)

Indeed, for the Rouse chain composed of a finite number (N) of beads, Berry [7] utilized
equation (1) to numerically calculate J (t) from G(t). Furthermore, Lodge and Wu [8]
formulated the constitutive equation for the Rouse chain: this equation gives the stress tensor
as a function of the Finger strain tensor, thereby enabling us to calculate all kinds of nonlinear
viscoelastic properties (such as the normal stress). Lodge [9] also constructed a rather general
framework for calculating the shape/strain recovery of a material under various conditions with
the aid of the constitutive equation.

In the above sense, the viscoelastic properties of the Rouse chains are well known.
However, surprisingly, the time evolution of the orientational anisotropy of the Rouse
eigenmodes during the constant stress creep/recovery processes was not examined previously
in the long history of the study of polymer dynamics. Because of the importance of the
Rouse model, the analysis of the conformational dynamics of the Rouse chain during the
creep/recovery processes is strongly desired.

From this point of view, we recently solved the Rouse equation of motion to calculate
the orientational anisotropy in the monodisperse systems [10] and binary blends [11] of the
Rouse chains in the continuous limit. The calculation, based on the simple Laplace inversion
method [12], was straightforward but the result was intriguing in the sense that each Rouse
eigenmode has a distribution in the retardation time and does not exhibit the single Voigt-type
retardation. This behaviour, reflecting interplay/correlation among the Rouse eigenmodes of
different orders (and for different chains in the blends) under the constant stress condition, is
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Figure 1. Schematic illustration of the Rouse chain.

quite different from the behaviour under rate-controlled flow where each eigenmode exhibits
retardation/relaxation associated with a single characteristic time. Furthermore, the calculation
for the Rouse chains with a finite bead number (N) showed that the chain deforms affinely
on sudden imposition/removal of the stress and the magnitude of this deformation is inversely
proportional to N − 1 [13].

This article presents a review of these results. The theoretical framework of the Rouse
dynamics is briefly explained in section 2. In section 3, the orientational anisotropy during the
creep/recovery processes is analysed for the monodisperse systems and blends of the Rouse
chains with N � 1. Then, changes of the chain conformation on sudden imposition/removal
of the stress are analysed for monodisperse Rouse chains with small and large N . In relation to
these results, a difference between the creep and relaxation properties is discussed for chains
obeying multiple relaxation mechanisms (Rouse and reptation mechanisms) [14]. Finally,
section 4 gives a summary of this article.

2. Theoretical framework [4–6]

2.1. Rouse equation of motion

We consider a monodisperse system containing ν linear Rouse chains per unit volume. As
shown in figure 1, each chain is composed of N segments (beads), and the neighbouring
segments in the chain are connected by a Gaussian spring of the spring constant κ = 3kBT/a2.
Here, a is the average size of the segment (= root mean square length of the spring), kB is
the Boltzmann constant, and T is the absolute temperature. In the mean-field description of
the chain motion, we focus on a given chain and regard the surrounding chains as a uniform
frictional medium for the focused chain. The segmental friction coefficient of the focused
chain in this medium is denoted by ζ .

A shear force or shear deformation is applied to the system. The x and y directions,
respectively, are chosen to be the shear and shear gradient directions, as shown in figure 1.
The flow velocity V(n, t) of the frictional medium at the position r(n, t) of the nth segment
of the focused chain at time t is determined by the applied force/deformation. A uniform
shear field characterized with a position-independent shear rate γ̇ (t) is generated by the small
force/deformation in the linear viscoelastic regime. Then, V(n, t) is expressed in terms of this
γ̇ (t) and the y component of the position vector of the nth segment, ry(n, t), as

V(n, t) =
[

γ̇ (t)ry(n, t)
0
0

]
. (2)

Changes of r(n, t) with t are fully described by the discrete version of the Rouse equation of
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motion incorporating this V,

ς
∂

∂ t




r(1, t)
r(2, t)

· · ·
· · ·

r(N, t)


 − ς




V(1, t)
V(2, t)

· · ·
· · ·

V(N, t)


 = κA ·




r(1, t)
r(2, t)

· · ·
· · ·

r(N, t)


 +




F(1, t)
F(2, t)

· · ·
· · ·

F(N, t)


 . (3)

Here, F(n, t) represents the Brownian force acting on the nth segment at time t , and A is the
well-known Rouse matrix given by

A =




−1 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · · · · 1 −2 1
0 0 · · · · · · 1 −1




. (4)

F(n, t) is modelled as a white noise and characterized with the first- and second-order moments
of its component Fα in the α-direction,

〈Fα(n, t)〉 = 0, 〈Fα(n, t)Fβ(m, t ′)〉 = 2ζ kBT δnmδ(t − t ′)δαβ (5)

where 〈· · ·〉 denotes the average over the chains in the system.
For N → ∞, r(n, t) is often treated as a continuous function of n and the range of n

is simplified to be 0 < n < N (instead of 1 � n � N). In this treatment, equation (3) is
rewritten as the continuous version of the Rouse equation of motion:

ς

{
∂r(n, t)

∂ t
− V(n, t)

}
= κ

∂2r(n, t)

∂n2
+ F(n, t) for 0 < n < N. (6)

Here, F(n, t) represents the continuous version of the Brownian force characterized by

〈Fα(n, t)〉 = 0, 〈Fα(n, t)Fβ(m, t ′)〉 = 2ζ kBT δ(n − m)δ(t − t ′)δαβ. (7)

The boundary condition for equation (6), representing the lack of external tensile forces acting
at the chain ends, is given by

∂r(n, t)

∂n
= 0 for n = 0 and N. (8)

In the binary blends of Rouse chains, the above equation of motion (in either the discrete
or the continuous version) is valid for each component chain. Thus, equations (2)–(8) fully
specify the motion of the Rouse chains considered in this article.

2.2. Orientational anisotropy and stress

In the linear viscoelastic regime under small shear force/deformation, the orientational
anisotropy of monodisperse Rouse chains is fully characterized with the orientation function
defined by

S(n, t) = 1

a2
〈ux (n, t)uy(n, t)〉. (9)

Here, uα(n, t) is the α component of the bond vector u(n, t) (α = x, y), with u(n, t) being
defined by

u(n, t) = r(n + 1, t) − r(n, t) (in discrete treatment) (10a)

u(n, t) = ∂r(n, t)

∂n
(in continuous treatment). (10b)
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The shear stress at time t , σ(t), is simply related to a total orientational anisotropy as

σ(t) = 3νkBT
N−1∑
n=1

S(n, t) (in discrete treatment) (11a)

σ(t) = 3νkBT
∫ N

0
dn S(n, t) (in continuous treatment). (11b)

For the blends of Rouse chains, the orientational anisotropy and stress for each component
chain are specified by equations (9) and (11), respectively, and the total stress is given by a
sum of the component stresses.

Thus, we can analyse the conformational changes of the Rouse chain during the
creep/recovery processes by solving the equation of motion (equation (3) or (6)) to calculate
u(n, t) and S(n, t). Since the stress is kept constant during these processes, the shear rate γ̇ (t)
included in the equation of motion (through the V(n, t) term; see equations (2), (3), and (6))
is determined by the Rouse chain itself in such a way that the calculated S(n, t) satisfies the
constant stress condition. In other words, the equation of motion and the stress expression
(equation (11)) should be coupled with each other for consistently calculating γ̇ (t) and S(n, t).
This calculation, achieved by introducing Rouse eigenmodes, reveals interplay (correlation)
of these eigenmodes due to this coupling, as demonstrated in the remaining part of this article.

3. Results and discussion

3.1. Monodisperse Rouse chain with N � 1 [10]

3.1.1. Eigenmode expansion and orientation function. For monodisperse Rouse chains
having the bead number N � 1, we utilize the continuous version of the equation of motion
(equation (6)) to calculate the orientation function S(n, t) during the creep/recovery processes.
Because of the boundary condition, equation (8), the segment position r(n, t) is conveniently
expanded in the Rouse eigenmodes associated with the eigenfunctions cos(pπn/N),

r(n, t) =
∞∑

p=0

[ X p(t)
Yp(t)
Z p(t)

]
cos

(
pπn

N

)
. (12)

Here, X p(t), Yp(t), and Z p(t) are the amplitudes of the pth eigenmode in the x-, y-, and
z-directions (shear, shear gradient, and vorticity directions), respectively.

From equations (2) and (12), the flow velocity V(n, t) is also expanded with respect to
the Rouse eigenfunctions as

V(n, t) =
∞∑

p=0

[
γ̇ (t)Yp(t)

0
0

]
cos

(
pπn

N

)
. (13)

Equations (6), (12), and (13) give a set of time evolution equations for the eigenmode amplitudes
X p(t) and Yp(t) (that determine the orientation function, as explained later). The results are
summarized as [10]

dX p(t)

dt
= −κp2π2

ς N2
X p(t) + γ̇ (t)Yp(t) +

1

ς
fx,p(t) (14)

dYp(t)

dt
= −κp2π2

ς N2
Yp(t) +

1

ς
fy,p(t). (15)
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Here, fα,p(t) (α = x, y; p � 1) is the Fourier component of the Brownian force F(n, t)
defined by

fα,p(t) = 2

N

∫ N

0
dn Fα(n, t) cos

(
pπn

N

)
(α = x, y). (16)

This fα,p(t) has the first- and second-moment averages (see equation (7))

〈 fα,p(t)〉 = 0, 〈 fα,p(t) fβ,q (t ′)〉 = 4ςkBT

N
δ(t − t ′)δpqδαβ . (17)

Equations (14) and (15) can be solved with a standard method to give

X p(t) = X p(0) exp

(
− p2t

2τR

)
+ Yp(0) exp

(
− p2t

2τR

) ∫ t

0
dt ′ γ̇ (t ′)

+
1

ς

∫ t

0
dt ′ exp

(
− p2(t − t ′)

2τR

)

×
{

fx,p(t
′) + γ̇ (t ′)

∫ t ′

0
dt ′′ exp

(
− p2(t ′ − t ′′)

2τR

)
fy,p(t

′′)
}

(18)

Yp(t) = Yp(0) exp

(
− p2t

2τR

)
+

1

ς

∫ t

0
dt ′ exp

(
− p2(t − t ′)

2τR

)
fy,p(t

′). (19)

Here, τR is the longest viscoelastic relaxation time of the Rouse chain,

τR = ς N2

2π2κ
= ς N2a2

6π2kBT
. (20)

From equations (9), (10b), (12), (18), and (19), the orientation function is obtained as

S(n, t) = 2σsteady

νNkBT

∞∑
p=1

A p(t) sin2
(

pπn

N

)
(21)

where σsteady is the stress in the steady state (=applied stress in the creep/recovery processes)
and A p(t) is the normalized orientational anisotropy of the pth Rouse eigenmode defined by

A p(t) = νkBT p2π2

2σsteadya2 N
〈X p(t)Yp(t)〉. (22)

During the creep/recovery processes of the Rouse chain, the cross-averages 〈X p(t)Yq(t)〉
with p �= q vanish, as shown later in equation (23). Thus, S(n, t) is contributed only from
〈X p(t)Yp(t)〉, as shown in equations (21) and (22).

3.1.2. Orientational anisotropy during creep. In the creep process, the Rouse chains fully
equilibrated at t < 0 are subjected to a constant stress σ0 at t � 0. The equilibrium
isotropic conformation, characterized with 〈X pYq〉eq = 0, serves as the initial condition for
equations (18) and (19). With this initial condition, equations (17)–(19) give the orientational
anisotropy of the Rouse eigenmodes. The results are summarized as [10]

〈X p(t)Yq(t)〉 = δpq
2a2 N

3 p2π2

∫ t

0
dt ′ γ̇ (t ′) exp

(
− p2(t − t ′)

τR

)
. (23)

The shear rate γ̇ (t) included in this expression of 〈X p(t)Yp(t)〉 is self-consistently
determined in such a way that the stress calculated from 〈X p(t)Yp(t)〉 coincides with the applied
constant stress σ0 (=σsteady). That is, from equations (21)–(23) together with equation (11b)
with σ(t) = σ0 at t > 0, we obtain an integral equation for γ̇ (t),

σ0 = νkBT
∞∑

p=1

∫ t

0
dt ′ γ̇ (t ′) exp

(
− p2(t − t ′)

τR

)
. (24)
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This equation can be solved with the Laplace inversion method described in appendix A. The
strain (integral of γ̇ ) thus obtained is summarized as

γ (t) = σ0

{
t

η0
+ Jr(t)

}
(25)

where η0 and Jr(t) are the zero-shear viscosity and recoverable compliance given by

η0 = νkBTπ2τR

6
(26)

and

Jr(t) = 4

νkBT

∞∑
p=1

1

θ2
p

{
1 − exp

(
− t

λp

)}
with λp = π2τR

θ2
p

(pth retardation time).

(27)

The numerical coefficients θp appearing in equation (27) are determined from [10]

tan θp = θp (pπ < θp < (p + 1/2)π and θp → (p + 1/2)π for p → ∞). (28)

These coefficients satisfy summation rules,
∞∑

q=1

1

θ2
q

= 1

10
,

∞∑
q=1

1

p2 − (θq/π)2
= − 3

2 p2
. (29)

Substituting the shear rate γ̇ (t) (=σ0{η−1
0 + J̇r(t)}) calculated from equations (25)–(27)

into equation (23), we obtain an explicit expression for the normalized anisotropy A p(t) of the
pth Rouse eigenmode,

A p(t) = 2

p2π2
+

4

3π2

∞∑
q=1

1

p2 − (θq/π)2
exp

(
− t

λq

)
for creep process. (30)

Equations (21) and (30) specify the orientation function S(n, t) of the monodisperse Rouse
chains (in the continuous limit) during the creep process.

3.1.3. Orientational anisotropy during creep recovery. From equations (22) and (30),
the eigenmode anisotropy in the steadily flowing state is given by 〈X pYq〉steady =
δpq{4σ0a2 N/νkBT p4π4} with σ0 = σsteady. Utilizing this 〈X pYq〉steady as the initial condition
for equations (18) and (19), we find the eigenmode anisotropy during the creep recovery from
the steadily flowing state [10]:

〈X p(t)Yq(t)〉 = δpq
4σ0a2 N

νkBT p4π4
exp

(
− p2t

τR

)
+ δpq

2a2 N

3 p2π2

∫ t

0
dt ′ γ̇ (t ′) exp

(
− p2(t − t ′)

τR

)
.

(31)

Requiring the shear rate γ̇ (t) included in equation (31) to satisfy the zero-stress condition
during the recovery process (equations (21), (22), (31) together with equation (11b) with
σ(t) = 0 at t > 0), we obtain an integral equation for γ̇ (t),

0 =
∞∑

p=1

6σ0

p2π2
exp

(
− p2t

τR

)
+ νkBT

∞∑
p=1

∫ t

0
dt ′ γ̇ (t ′) exp

(
− p2(t − t ′)

τR

)
. (32)

This equation is solved with the Laplace inversion method (appendix B) to give

γ̇ (t) = − 4σ0

νkBT π2τR

∞∑
p=1

exp

(
− t

λp

)
with λp = π2τR

θ2
p

(33)



R614 Topical Review

n /N

S 
˚(

n,
t)

0

0.1

0.2

0.3

0.4

0.5

0.6
(a) start-up-flow  t ∞/τR = 

1

 
0.01

0.3

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

(b) creep

Figure 2. Growth of anisotropy along the chain backbone (a) after start-up of flow and (b) during
the creep process. Symbols are the same in the top and bottom panels.

where θp is the coefficient specified by equation (28). Substituting this γ̇ (t) into equation (31),
we obtain the normalized anisotropy of the pth Rouse eigenmode, A p(t). The results are
summarized as

A p(t) = − 4

3π2

∞∑
q=1

1

p2 − (θq/π)2
exp

(
− t

λq

)
for creep recovery. (34)

3.1.4. Difference between stress-controlled and strain rate-controlled processes. Here, it is
of interest to compare the evolution of the orientational anisotropy along the chain backbone
under stress- and strain-controlled conditions. Under the latter condition, the shear rate
γ̇ (t) is externally given and the amplitudes of the Rouse eigenmodes, X p(t) and Yp(t), are
straightforwardly calculated from equations (18) and (19) with appropriate initial conditions.
The results for the start-up and cessation of constant rate flow can be summarized for the
normalized anisotropy of the Rouse eigenmodes as [10]

A p(t) = 2

p2π2

{
1 − exp

(
− p2t

τR

)}
after start-up of flow (35)

A p(t) = 2

p2π2
exp

(
− p2t

τR

)
after cessation of steady flow. (36)

Here, τR is the longest viscoelastic Rouse relaxation time specified by equation (20).
Growth of the orientational anisotropy along the chain backbone is shown in figures 2(a)

and (b) for the processes of start-up flow and creep, respectively. For the best comparison of
these two processes, a normalized orientation function S◦(n, t) = {ν(N−1)kBT/σsteady}S(n, t)
(with σsteady = σ0 in the creep process) calculated from equations (21), (30), and (35) is plotted
against a normalized segment coordinate, n/N . (For N � 1, this plot does not change with
N .)
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Figure 3. Decay of anisotropy along the chain backbone (a) after cessation of steady flow and
(b) during creep recovery. Symbols are the same in the top and bottom panels.

Although the initial state (equilibrium state) and the steadily flowing state (at t = ∞) are
common for the two processes, several important differences are observed in the transient state
during these processes. We first note that the approach to the steady state (S◦(n,∞) shown
with the dotted curve) is faster for the creep than for the start-up flow, because the longest
retardation time λ1 = π2τR/θ2

1 (=0.4888τR; evaluated from equation (28)) is considerably
shorter than the longest relaxation time τR. We also note that S◦(n, t) of all segments (all
n values) monotonically increases to S◦(n,∞) during the start-up flow process. In contrast,
during the creep process, S◦(n, t) for the segments near the chain ends increase once above
S◦(n,∞) and then decay to S◦(n,∞). This overshoot of the orientational anisotropy near the
chain ends naturally results from the constant stress requirement during the creep process, as
discussed later in more detail.

For the processes of cessation of steady flow and creep recovery, respectively, figures 3(a)
and (b) show decay of the orientational anisotropy along the chain backbone. The normalized
orientation function S◦(n, t) calculated from equations (21), (34), and (36) is plotted against
n/N . Although the initial, steadily flowing state and the final, isotropic state are common for
the two processes, the decay of the anisotropy is faster in the creep recovery process than in the
cessation process (because λ1 < τR). A more spectacular difference is noted for the segments
near the chain ends during the creep recovery (figure 3(b)). These segments undershoot once
to negative orientation (in the direction opposite to the steady flow direction at t < 0) and then
approach the isotropic state. In contrast, after cessation of constant rate flow, all segments
exhibit monotonic decay in their orientational anisotropy (figure 3(a)).

The overshoot and undershoot of the orientational anisotropy of the segments near the
chain ends, seen in the creep and recovery processes, respectively, are natural consequences
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Figure 4. Growth of the normalized anisotropy Ap of Rouse eigenmodes with p = 1–3 (a) after
start-up of flow and (b) during creep. Symbols are the same in the top and bottom panels.
Reproduced, with permission, from [10].

of the constant stress requirement during these processes. In the creep process, the total
anisotropy (the integral of S(n, t) along the chain backbone; see equation (11b)) should match
the applied, constant stress σ0 at any t > 0. The segments near the ends can change their
orientation more rapidly than those at the chain centre, because the motion near the ends is
more significantly contributed from higher order Rouse eigenmodes compared to the motion
at the centre (as can be noted from the sin2(pπn/N) factor for S(n, t) shown in equation (21);
this factor is larger for larger p at n ∼= 0 and N). These quickly moving segments near the
chain ends are forced to be over-orientated at short t so as to compensate a slow growth of the
orientation at the centre. At long t where the chain centre has adjusted its conformation to have
a large anisotropy, the segments near the ends are no longer forced to make this compensation
and thus becomes less orientated (because the chain end itself serves as a source of isotropic
conformation; this role of the chain end is represented through the boundary condition for the
Rouse motion, equation (8)). The overshoot of the orientation near the chain ends occurs in
this way. Similarly, the negative undershoot near the chain ends during the recovery process
results from the compensation of the slowly decaying positive orientation at the chain centre
under the zero-stress condition.

In the strain-controlled processes of start-up and cessation of constant rate flow, the
anisotropy of the segments near the chain ends exhibits no overshoot/undershoot and rapidly
approaches its steady state (figures 2(a) and 3(a)). This behaviour reflects the lack of the
constant stress requirement during these processes.

For further investigation of the effect of this requirement on each Rouse eigenmode,
figure 4 compares the normalized anisotropies A p of the first to third eigenmodes (p = 1–3)
during the start-up flow and creep processes (see equations (30) and (35)). Figure 5 makes the
comparison of A p for the cessation and creep recovery processes (see equations (34) and (36)).
In both figures, A p (or |A p|) is double-logarithmically plotted against a normalized time, t/τR.
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Figure 5. Decay of the normalized anisotropy Ap of Rouse eigenmodes with p = 1–3 (a) after
cessation of flow and (b) during creep recovery. Unfilled and filled symbols indicate positive
and negative Ap values. Symbols are the same in the top and bottom panels. Reproduced, with
permission, from [10].

After start-up of flow, A p of each Rouse eigenmode is governed by a single characteristic
time τR/p2 (see equation (35)) and exponentially approaches its steady state, as seen in
figure 4(a). This single Voigt behaviour indicates that the Rouse eigenmodes of different
orders behave independently under the rate-controlled flow.

In contrast, in the stress-controlled creep process, A1 for the lowest Rouse eigenmode
monotonically increases to its steady state value while A2 and A3 for the second and third
eigenmodes exhibit an overshoot before attaining their steady state, as seen in figure 4(b).
Similar overshoot is found for all higher eigenmodes (with p � 4). The non-Voigt behaviour
of the Rouse eigenmodes, characterized with this overshoot, results from the constant stress
requirement,

∑∞
p=1 A p(t) = 1/3 (derived from equations (11b) and (21) with σ(t) = σ0 =

σsteady). Because of this requirement, the Rouse eigenmodes of different orders have interplay
(or correlation) in their anisotropies so that the higher eigenmodes are forced to compensate
the slow growth of A1 of the lowest eigenmode. The overshoot of A p of the higher eigenmodes
(figure 4(b)), leading to the overshoot of S◦(n, t) near the chain ends (figure 2(b)), is a natural
consequence of this compensation.

An even more striking difference is observed for the eigenmode anisotropies A p in
the processes of cessation of steady flow and creep recovery. After cessation of flow, all
Rouse eigenmodes behave independently so that their A p (equation (36)) exhibit monotonic
exponential decay, as observed in figure 5(a). In contrast, in the creep recovery process,
the eigenmodes of different orders exhibit an interplay in order to satisfy the zero-stress
requirement,

∑∞
p=1 A p(t) = 0 (see equations (11b) and (21) with σ(t) = 0). Because of

this requirement, the A p for the higher eigenmodes undershoot to negative values (shown in
figure 5(b) with filled symbols connected with dotted curves) in order to compensate a slow
decay of positive A1 of the lowest eigenmode. The undershoot of S◦(n, t) near the chain ends
during the creep recovery (figure 3(b)) reflects this undershoot of A p of the higher eigenmodes.
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3.2. Binary blends of Rouse chains with N � 1 [11]

We have seen that the Rouse eigenmodes of monodisperse chains (with N � 1) exhibit
non-Voigt behaviour during the creep/recovery processes because of their interplay due to
the constant stress requirement. For binary blends of short and long Rouse chains, we expect
similar interplay between the component chains having different relaxation times. This section
examines the orientational anisotropies of these component chains during the creep process.

3.2.1. Anisotropy in blends. We consider binary blends of short and long Rouse chains
(component chains 1 and 2) each composed of N1 and N2 segments. For the component
chain j , the weight fraction is denoted as w j and the number density is given by ν j =
(w j/N j )/{(w1/N1) + (w2/N2)}.

In the blends, each component chain obeys the Rouse equation of motion. We assume
N2 > N1 � 1 so that the component dynamics is described by the continuous version of the
equation of motion, equation (6). Then, the position of the segments of each component is
expressed in terms of the Rouse eigenmodes in the form of equation (12). The amplitudes
of the pth eigenmode of the component j in the shear and shear gradient directions, X [ j ]

p (t)
and Y [ j ]

p (t), obey the time evolution equations (14) and (15) and their time-dependent changes
are described by equations (18) and (19). The corresponding orientational anisotropy of the
Rouse eigenmodes, 〈X [ j ]

p (t)Y [ j ]
p (t)〉, is determined by the integral equation (23) with N and

τR therein being replaced by N j and τ
[ j ]
R (=ζ N2

j a2/6π2kBT ; longest relaxation time of the
component j ), respectively. The shear rate γ̇ (t) included in this integral equation is determined
from the constant stress requirement, σ(t) = applied stress σ0. In the blends, the stress is
sustained by both of the components 1 and 2, and this requirement is written as [11]

σ0 = kBT
∫ t

0
dt ′ γ̇ (t ′)

{
ν1

∞∑
p=1

exp

(
− p2(t − t ′)

τ
[1]
R

)
+ ν2

∞∑
p=1

exp

(
− p2(t − t ′)

τ
[2]
R

)}
. (37)

(For monodisperse systems, equation (37) reduces to equation (24).)
Equation (37) can be solved with a Laplace inversion method similar to that described in

appendix A. The shear rate thus obtained is written as [11]

γ̇ (t) = σ0

{
1

η0
+

4

ν1kBT π2τ
[1]
R

∞∑
p=1

�2
p

h p
exp

(
− t

�p

)}
with �p = π2τ

[1]
R

�2
p

(38)

with

η0 = π2kBT

6

(
ν1τ

[1]
R + ν2τ

[2]
R

)
(viscosity of the blend) (39)

and

h p = �2
p − (1 − �p cot �p)(1 + �p cot �p)

+
ν2

ν1

[(
N2�p

N1

)2

−
{

1 −
(

N2�p

N1

)
cot

(
N2�p

N1

)}

×
{

1 +

(
N2�p

N1

)
cot

(
N2�p

N1

)}]
. (40)

The coefficients �p appearing in equations (38) and (40) are determined from

ν1{�p cot �p − 1} + ν2

{(
N2�p

N1

)
cot

(
N2�p

N1

)
− 1

}
= 0. (41)
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For ν2 = 0 and/or N2 = N1 (i.e., for monodisperse systems), �p reduces to θp specified by
equation (28) and h p coincides with θ2

p.

Utilizing the shear rate γ̇ (t) given by equation (38) in (23) (with N = N j and τR = τ
[ j ]
R ),

we can calculate the orientational anisotropy of the Rouse eigenmodes, 〈X [ j ]
p (t)Y [ j ]

p (t)〉. The
result is conveniently written for the normalized anisotropy of the pth eigenmode [11],

A[ j ]
p (t) ≡ ν j kBT p2π2

2σ0a2 N j
〈X [ j ]

p (t)Y [ j ]
p (t)〉 = 2ν j N2

j

p2π2(ν1 N2
1 + ν2 N2

2 )

+
4ν j

3π2ν1

∞∑
q=1

�2
q

hq{(pN1/N j )2 − (�q/π)2} exp

(
− t

�q

)
. (42)

The stresses σ [ j ] sustained by the short and long chains ( j = 1 and 2), representing the
conformational anisotropies summed over the backbones of these chains, are expressed in
terms of these A[ j ]

p (t) as

σ [ j ] = 3σ0

∞∑
p=1

A[ j ]
p (t). (43)

3.2.2. Interplay between short and long chains in blend. For the blends having N2/N1 = 3
and 10, figure 6(a) shows growth of the stress σ [ j ](t) sustained by the short and long chains
during the creep process (equations (42) and (43)). The weight fractions of these chains are
w1 = w2 = 0.5. For comparison, the growth in the monodisperse system (N2/N1 = 1) is
also shown. For the clearest comparison of the behaviour in the blends and the monodisperse
system, σ [ j ](t) is normalized by σ0w j and semi-logarithmically plotted against a normalized
time defined for the short chain, t/τ [1]

R .
After start-up of the constant rate flow (without the constant stress requirement),

the component chains in the blends behave independently. Thus, the normalized stress
σ [ j ](t)/σ0w j of the component j after start-up of flow is identical to that in the monodisperse
system. From equations (35) and (43), this stress is obtained as

σ [ j ]

σ0w j
= (1/N j )

(w1/N1) + (w2/N2)

kBT τ
[ j ]
R

η0

∞∑
p=1

1

p2

{
1 − exp

(
− p2t

τ
[ j ]
R

)}
(44)

where η0 is the blend viscosity given by equation (39). Figure 6(b) shows plots of this
σ [ j ](t)/σ0w j .

The steady state is the same for the creep and start-up flow processes, and the ratio
of the steady stresses of the long and short chains, σ [2](∞)/σ [1](∞), increases with the
N2/N1 ratio. Specifically, σ [2](∞)/σ [1](∞) = (τ

[2]
R /N2)/(τ

[1]
R /N1) = N2/N1 for w2 = w1

(see equation (44)). However, this increase merely reflects a distribution of the total stress
σ [2](∞)+ σ [1](∞) for the short and long chains having different relaxation times τ

[1]
R and τ

[2]
R .

The essential feature under the rate-controlled flow is the independent stress growth of the
short and long chains that reflects independent conformational evolution of these chains. This
feature is observed in figure 6(b) as a coincidence of a fractional stress σ [1](t)/σ [1](∞) of the
short chain in the blends and monodisperse system at any t . (In figure 6(b), σ [2](t) for the long
chain is plotted against the normalized time for the short chain, t/τ [1]

R , and thus the growth of
σ [2](t) looks delayed with increasing N2/N1 ratio. However, this superficial delay vanishes
when σ [2](t) is plotted against the normalized time for the long chain t/τ [2]

R , as clearly noted
from equation (44).)

In contrast, during the creep process, the stresses σ [1](t) and σ [2](t) of the short and
long chains synchronously decay and grow, respectively, in such a way that the total stress
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Figure 6. Normalized stress sustained by the short and long Rouse chains ( j = 1 and 2) in the
blends with w1 = w2 = 0.5 and N2/N1 as indicated. The stresses (a) during the creep process
and (b) after start-up of constant rate flow are plotted against the normalized time for the short
chain, t/τ [1]

R . Symbols are the same in the top and bottom panels. Reproduced, with permission,
from [11].

σ [1](t) + σ [2](t) is kept constant (=σ0); see figure 6(a). Consequently, a time t [1]
s required

for achieving the steady state for the short chain increases with increasing N2, because the
conformational change of the long chain determining the growth of σ [2](t) becomes slower
for larger N2 and the short chain having a much shorter relaxation time (τ

[1]
R ) is forced to

compensate this slow growth. These features of the creep process demonstrate the importance
of the conformational interplay (correlation) of the short and long chains under the constant
stress requirement.

The eigenmodes of respective chains also exhibit the interplay,as demonstrated in figures 7
and 8 where the eigenmode anisotropies A[ j ]

p (p = 1–3; equation (42)) of the component chain
j in the blends are normalized by the weight fractions w j and double-logarithmically plotted
against a normalized time t/τ [ j ]

R .
As seen in the top panel of figure 7, A[2]

1 for the lowest eigenmode of the long chain
increases monotonically with t . The anisotropies of the higher eigenmodes, A[2]

2 and A[2]
3 ,

overshoot before attaining their steady state, thereby compensating the slow growth of A[2]
1 ,

as observed in the middle and bottom panels. This overshoot is indicative of the interplay of
the eigenmodes during the creep process, as discussed earlier for monodisperse systems. It
should also be noted that the monotonic growth of A[2]

1 and the overshoot of A[2]
2 and A[2]

3 are
qualitatively similar in the monodisperse system (N2/N1 = 1; curves without symbol) and the
blends (circle and triangle). That is, the interplay among the eigenmodes of the long chain is
just moderately affected by blending.

In contrast, for the short chain in the blend, the overshoot of the higher eigenmodes (p = 2
and 3) is quite prominent (compared to that for the long chain) and even the lowest eigenmode
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Figure 7. Anisotropies A[2]
p of the first to third Rouse eigenmodes of the long chain in the blends

with w1 = w2 = 0.5 and N2/N1 as indicated. A[2]
p is normalized by w2 and plotted against the

normalized time for the long chain, t/τ [2]
R . Symbols are the same in all panels. Reproduced, with

permission, from [11].

exhibits the overshoot, as demonstrated in figure 8. This result indicates that all eigenmodes of
the short chain can adjust themselves quickly compared to the eigenmodes of the long chain,
thereby compensating the slow growth of the latter. Thus, the eigenmodes of the short chain
are strongly affected by the orientational interplay between the long and short chains during
the creep process.

3.3. Monodisperse Rouse chains with small N [13]

The continuous version of the Rouse model (equation (6)) is applicable to a real chain in a
timescale not very much shorter than the longest relaxation time τ1 of this chain. However, this
model gives an infinite number of retardation modes and the retardation time λp approaches
zero with increasing mode index p → ∞ (see equations (27) and (28)). This feature is
an artefact of the continuous model, and the fast dynamics of the real chain (having a finite
number of modes with λp > 0) cannot be described by this model. A corresponding artefact
is well known for the relaxation modulus G(t): the continuous model gives an infinitely large
instantaneous modulus G(0) while the real chain has a finite value of G(0).

Thus, for description of the behaviour of the real chain over the entire range of time
(including the short timescale), we have to utilize a discrete Rouse chain composed of a finite
number of beads and having a finite number of retardation modes. Obviously, all retardation
times λp of the discrete chain are positive, and it takes a finite time for the chain to exhibit
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the retardational motion. Concerning this feature of the discrete chain, we naturally ask a
question: How does this chain abruptly change its conformation on imposition/removal of the
stress during the creep/recovery processes? For this question, an analysis of the discrete chain
conformation during these processes is highly desired. (Surprisingly, neither results of this
analysis nor related experimental data are found in the literature.)

As the simplest but still informative model cases, we recently analysed the conformational
changes of discrete, monodisperse Rouse chains with the segment (bead) number N = 3
and 4 [13]. The analysis revealed that the chain is affinely deformed (without being contributed
from the retardation modes) on abrupt imposition/removal of the stress and this deformation
determines the instantaneous value of the recoverable compliance. Details of this behaviour
are explained below.

3.3.1. Four-bead Rouse chain. For the monodisperse Rouse chain composed of four beads
(N = 4), the discrete version of the equation of motion utilizing a 4 × 4 Rouse matrix
(see equations (3) and (4)) can be easily solved by expanding the segment position with respect
to four discrete Rouse eigenmodes [13]. The zeroth eigenmode is related to the centre-of-mass
diffusion, and the internal eigenmodes (first to third eigenmodes) represent conformational
changes of the chain. The relaxation times of these internal eigenmodes are given by

τ1 = (2 +
√

2)ς

4κ
, τ2 = ς

4κ
, τ3 = (2 − √

2)ς

4κ
(45)
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where ζ and κ are the friction coefficient of the bead (segment) and the spring constant,
respectively (see figure 1). During the creep under a constant stress σ0, the four-bead Rouse
chain itself determines the shear rate γ̇ (t) in such a way that its stress matches the applied
stress. Specifically, γ̇ (t) is determined by an integral equation (similar to equation (24) for the
case of N → ∞),

σ0 = νkBT
∫ t

0
dt ′ γ̇ (t ′)

3∑
p=1

exp

(
− t − t ′

τp

)
for creep of four-bead chain (46)

where ν is the chain number density. This equation is solved to give the creep compliance
J (t) (=γ (t)/σ0) [13],

J (t) = t

η0
+ Jr(t) with viscosity η0 = 5νkBT ς

4κ
. (47)

The recoverable compliance Jr(t) is written as

Jr(t) = 1

3νkBT

[
1 +

7 + 2
√

6

25

{
1 − exp

(
− t

λ1

)}
+

7 − 2
√

6

25

{
1 − exp

(
− t

λ2

)}]
(48)

with retardation times being given by

λ1 = (6 +
√

6)ς

20κ
, λ2 = (6 − √

6)ς

20κ
. (49)

The orientational anisotropy 〈X p(t)Yp(t)〉 of the pth Rouse eigenmode (p = 1–3)
is calculated from the shear rate γ̇ (t)(= J̇ (t)σ0) through an integral equation similar to
equation (23). 〈X p(t)Yp(t)〉 for each eigenmode has a distribution in the retardation times,
and each retardation mode is contributed from the first to third Rouse eigenmodes. This
fact can be most clearly demonstrated for the stress σp(t) sustained by the pth eigenmode
(σp(t) ∝ 〈X pYp〉),

σ1(t) = σ0

{
2 +

√
2

5
− (

√
6 + 1)(

√
3 + 1)

30
exp

(
− t

λ1

)
− (

√
6 − 1)(

√
3 − 1)

30
exp

(
− t

λ2

)}

(50a)

σ2(t) = σ0

{
1

5
+

√
6 + 1

15
exp

(
− t

λ1

)
−

√
6 − 1

15
exp

(
− t

λ2

)}
(50b)

σ3(t) = σ0

{
2 − √

2

5
+

(
√

6 + 1)(
√

3 − 1)

30
exp

(
− t

λ1

)
+

(
√

6 − 1)(
√

3 + 1)

30
exp

(
− t

λ2

)}
.

(50c)

Of course, the sum
∑3

p=1 σp(t) coincides with σ0 at any t .
The orientation function S(n, t) of the bond vector u(n, t) (defined by equations (9)

and (10a)) is calculated from the anisotropies 〈X p(t)Yp(t)〉. The results can be summarized
as

S(1, t) = S(3, t) = σ0

90νkBT

{
9 +

√
6 + 1

2
exp

(
− t

λ1

)
−

√
6 − 1

2
exp

(
− t

λ2

)}
(51a)

S(2, t) = σ0

45νkBT

{
6 −

√
6 + 1

2
exp

(
− t

λ1

)
+

√
6 − 1

2
exp

(
− t

λ2

)}
. (51b)

This S(n, t) specifies the orientational anisotropy of respective bond vectors but does not
represent an orientational cross-correlation of different bond vectors characterized by a



R624 Topical Review

correlation function Sc(n, m, t) = a−2〈ux(n, t)uy(m, t)〉n �=m . This cross-correlation is
reflected in an orientation function of the end-to-end vector R = ∑N−1

n=1 u(n, t) defined by

SR(t) ≡ 〈Rx (t)Ry(t)〉
〈R2〉eq

= 1

N − 1

{
N−1∑
n=1

S(n, t) +
N−1∑

n,m( �=n)=1

Sc(n, m, t)

}
. (52)

Here, 〈R2〉eq (=(N − 1)a2) is the mean square end-to-end distance at equilibrium. For the
four-bead chain, SR(t) is calculated from 〈X p(t)Yp(t)〉 as

SR(t) = σ0

18νkBT

{
4 − 3 +

√
6

3
exp

(
− t

λ1

)
− 3 − √

6

3
exp

(
− t

λ2

)}
. (53)

The stress σp(t) for the pth eigenmode and the orientation functions S(n, t) and
SR(t) during the creep recovery process are related to those during the creep process
(equations (50), (51), and (53)) as

[σp(t)]recovery = [σp(∞)]creep − [σp(t)]creep (54)

[S(n, t)]recovery = [S(n,∞)]creep − [S(n, t)]creep (55)

[SR(t)]recovery = [SR(∞)]creep − [SR(t)]creep. (56)

3.3.2. Three-bead Rouse chain. The three-bead chain has two (first and second) internal
eigenmodes describing the chain conformation. The anisotropies 〈X p(t)Yp(t)〉 of these
eigenmodes, calculated with the method applied for the four-bead chain, give the stress σp(t) for
the pth eigenmode, the orientation functions S(n, t) (n = 1, 2) and SR(t), and the recoverable
compliance Jr(t):

σ1(t) = σ0

{
3

4
− 1

4
exp

(
− t

λ1

)}
, σ2(t) = σ0

{
1

4
+

1

4
exp

(
− t

λ1

)}
(57)

S(1, t) = S(2, t) = σ0

6νkBT
(t-independent),

SR(t) = σ0

12νkBT

{
3 − exp

(
− t

λ1

)}
(58)

Jr(t) = 1

2νkBT

[
1 +

1

4

{
1 − exp

(
− t

λ1

)}]
. (59)

The single retardation time of the three-bead chain, λ1, is related to the longest relaxation time
τ1 as

λ1 = τ1

2
= ς

4κ
. (60)

Equations (54)–(56) hold for σp(t), S(n, t), and SR(t) during the creep recovery process.

3.3.3. Crossover from affine to non-affine deformation. For the four-bead Rouse chain during
the creep/recovery process, figure 9(a) shows plots of the normalized stress sustained by the
pth eigenmode, σp(t)/σ0 (equation (50)) against the normalized time t/τ1. This chain has the
instantaneous modulus G(0) = ν(N − 1)kBT = 3νkBT , and the corresponding instantaneous
strain against the applied stress σ0 is given by γσ = σ0/G(0) = σ0/3νkBT . The orientation
functions normalized by this strain, S◦(n, t) = S(n, t)/γσ and S◦

R(t) = SR(t)/γσ , are shown
in figure 9(b). For the three-bead chain, figure 10 shows σp(t)/σ0, S◦(n, t), and S◦

R(t), with
the normalizing strain for the latter two being given by γσ = σ0/2νNkBT . In all panels of
figures 9 and 10, the left and right halves indicate the time evolution of the quantities during
the creep process and successive recovery process, respectively.
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Figure 9. Creep and recovery behaviour of the four-bead Rouse chain; (a) normalized stress
σp(t)/σ0 sustained by the pth eigenmode, (b) normalized orientation functions S◦(n, t) and S◦

R(t)
of the bond vectors and end-to-end vector. These quantities are plotted against the normalized time,
t/τ1.

We first focus on the creep behaviour of the four-bead and three-bead chains. All
eigenmodes sustain the same, positive stress σp(0) = σ0/(N − 1) at the onset of creep,
as seen from figures 9(a) and 10(a) and equations (50) and (57). In this initial stage, the
chain is uniformly orientated along its backbone to have an n-independent S◦(n, 0) value
(=σ0/3(N − 1)νkBT γσ = 1/3); see figures 9(b) and 10(b) and equations (51) and (58). This
uniform orientation corresponds to the affine deformation from the isotropic, equilibrium state
by the magnitude of γσ , as explained in more detail in appendix C. The end-to-end vector
is also affinely deformed at t = 0 to have SR(0) = γσ /3; see equations (53) and (58) and
appendix C.

The affine deformation of the chain is an instantaneous, elastic deformation against the
modulus G(0) and is not contributed from any retardation mode. For this reason, the affine
deformation does occur instantaneously for the discrete Rouse chains having finite (non-zero)
retardation times, thereby allowing this chain to adjust its conformation on imposition of the
stress. It should be also noted that the instantaneous value of the recoverable compliance,
Jr(0) = 1/ν(N − 1)kBT = 1/G(0) (equations (48) and (59)), is determined by this affine
deformation.

After the initial stage, the stress σ1(t) sustained by the lowest eigenmode increases while
σ2(t) and σ3(t) for the higher eigenmodes decrease with t to reach the respective steady states,
as seen in figures 9(a) and 10(a). These transient changes of σp(t) result from the interplay of
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Figure 10. Creep and recovery behaviour of three-bead Rouse chain; (a) normalized stress σp (t)/σ0
sustained by the pth eigenmode, (b) normalized orientation functions S◦(n, t) and S◦

R(t) of the
bond vectors and end-to-end vector. These quantities are plotted against the normalized time, t/τ1.

the eigenmodes under the constant stress requirement, as discussed earlier for the continuous
chain: the σp(t) for the fast, higher eigenmodes are forced to compensate a slow growth of
σ1(t) for the lowest eigenmode and are allowed to decay to their steady state values only at
long t .

For the four-bead chain, these transient changes of σp(t) are associated with the increase
of the orientational anisotropy of the bond vector at the middle of the chain (S(2, t)) and the
decrease of the anisotropy of the bond vectors at the ends (S(1, t) and S(3, t)), as seen in
figure 9(b). This evolution of anisotropy is indicative of a conformational change from the
initial affine state to the non-uniformly (non-affinely) oriented, steadily flowing state.

This evolution of anisotropy reflects the interplay between the quickly moving end vectors
and slowly moving middle vector under the constant stress requirement, as discussed for the
continuous chain. The non-instantaneous part of the Jr(t) of the four-bead chain, shown by the
{1 − exp(−t/λp)} terms in equation (48), is contributed from the evolution of the anisotropy
of the bond vectors (as well as from the evolution of cross-correlation explained below).

The situation is somewhat different for the three-bead chain. This chain has only two
bond vectors. These vectors are equivalent to each other and thus have S(1, t) = S(2, t) at
any t . For this reason, S(1, t) and S(2, t) keep their initial values (=γσ/3) throughout the
creep process, as noted in figure 10(b) and equation (58). However, the chain conformation
itself exhibits a transient change to the steadily flowing state, as demonstrated by the growth
of SR(t) of the end-to-end vector. This growth is associated with transient changes of σ1 and
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σ2 (figure 10(a)) that are indicative of the interplay of all (two) eigenmodes under the constant
stress requirement.

The growth of SR(t) of the three-bead chain is exclusively attributed to a growth
of the orientational cross-correlation of neighbouring bond vectors, as can be noted from
equation (52) with S(n, t) = constant (=γσ /3). (No cross-correlation exists for the chain at
t = 0 affinely deformed from the isotropic,equilibrium state.) Thus, for this chain, the transient
dynamics during the creep process and the non-instantaneous part of Jr(t) (equation (59)) are
exclusively attributed to this growth of cross-correlation. (For the four-bead chain, the non-
instantaneous part is contributed from this growth as well as from the evolution of the anisotropy
of respective bond vectors.)

In relation to this result, it is informative to remember the creep behaviour of the two-bead
chain having a single bond vector. For this chain, no cross-correlation exists and no transient
(delayed) conformational change occurs during the creep process. Correspondingly, its Jr(t)
has a constant value (=1/νkBT ) over the entire range of t .

Now, we turn our attention to the creep recovery behaviour shown in the right halves of the
panels in figures 9 and 10. At the onset of recovery (t = 0), the four-bead and three-bead chains
exhibit abrupt jumps of the σp, S, and SR values from respective values in the steadily flowing
state. As shown in equations (54)–(56), this jump is the same in magnitude as that at t = 0
in the creep process but occurs in the opposite direction. Since [σp(0)]creep = σ0/(N − 1) for
all p and [S(n, 0)]creep = σ0/3G(0) = γσ/3 for all n, the magnitude of the abrupt jump at the
onset of recovery is the same for all eigenmodes and/or all bond vectors. This result indicates
that the steadily flowing chain is affinely deformed on sudden removal of the stress by the
magnitude γσ in the direction opposite to the flow, as explained in more detail in appendix C.

For the four-bead chain after this affine deformation, σp(t), S(n, t), and SR(t) gradually
decay to zero; see figure 9. This behaviour reflects the interplay among all eigenmodes and/or
all bond vectors occurring under the constant stress (zero-stress) requirement, similarly to the
situation during the creep process.

For the three-bead chain, S(n, t) immediately decays to zero at the onset of the recovery
because of the equivalence of all (two) bond vectors; see figure 10(b). However, the transient
changes of σp(t) during the recovery process (figure 10(a)) demonstrate that the chain
gradually change its conformation through the interplay of the eigenmodes under the zero-
stress requirement. The gradual decay of SR(t) (figure 10(b)) is exclusively attributed to a
decay of the cross-correlation associated with this interplay. This situation is similar to that
seen for the creep process.

3.3.4. Similarity/difference between discrete and continuous Rouse chains. The fundamental
feature of the discrete Rouse chains with N = 3 and 4, the transient conformational changes
during the creep/recovery processes governed by the interplay among all eigenmodes and/or
among all bond vectors, remains the same for the chains with any N value. Indeed, the
interplay (due to the constant stress requirement) governs the creep/recovery behaviour of the
continuous Rouse chain with N → ∞, as demonstrated earlier.

Here, we focus on the other feature of the discrete chains, the affine deformation on
sudden imposition/removal of the stress observed through the normalized orientation function,
S◦(n, t) = {ν(N −1)kBT/σ0}S(n, t) (=S(n, t)/γσ ). For the continuous chain, S◦(n, t) during
the creep and recovery processes is shown in figures 2(b) and 3(b). As seen in figure 2(b),
S◦(n, t) at short t during creep (t = 0.01τR) is independent of n and has a value of 1/3 except
for the segments near the chain ends (n ∼= 0, N). Indeed, from equations (21) and (30),
we can confirm [S◦(n, 0)]creep = 1/3 at t = 0 over the entire range of 0 < n < N . This
result indicates that the continuous chain is affinely deformed from the isotropic, equilibrium
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state by the magnitude γσ (=σ0/νNkBT in the continuous limit for N → ∞) at the onset
of creep.

Furthermore, equations (30) and (34) give a relationship between the eigenmode
anisotropies during the creep and recovery processes of the continuous chain, [A p(t)]recovery =
[A p(∞)]creep − [A p(t)]creep. Through equation (21), this relationship is rewritten as
[S(n, t)]recovery = [S(n,∞)]creep − [S(n, t)]creep. That is, equation (55) is valid also for
the continuous chain. Since [S(n, 0)]creep = γσ [S◦(n, 0)]creep = γσ /3, this chain has an
n-independent difference, [S(n, 0)]recovery − [S(n,∞)]creep = −γσ/3. This result, identical
to that found for the discrete chains, indicates that the continuous chain is affinely deformed
from the steadily flowing state at the onset of creep recovery.

Thus, the discrete and continuous chains commonly exhibit the affine deformation by
the magnitude of γσ on sudden imposition/removal of the stress. However, we also note a
quantitative difference: since the strain characterizing this deformation, γσ = σ0/G(0) =
σ0/ν(N − 1)kBT/σ0, decreases with increasing N , the discrete chain exhibits discontinuous
jumps of finite magnitude in its σp, S, and SR on sudden imposition/removal of the stress
(see figures 9 and 10) while only infinitesimal jumps are observed for the continuous chain
with N → ∞ (as can be noted from equations (29), (30), and (34)). This difference naturally
results in a difference in the instantaneous value of the recoverable compliance of these chains;
Jr(0) > 0 for the discrete chains (equations (48) and (59)) while Jr(0) = 0 for the continuous
chain (equation (27)).

This feature of Jr(0) has an important consequence for experiments: when we attempt
to describe viscoelastic data for real polymer chains at short t with the Rouse model, the
chains should be subdivided into the actual Rouse segments with the size being intrinsic to
each polymer. This size can be determined experimentally with the aid of the modified stress
optical rule [15]. Extensive experiments by Inoue and co-workers suggest that the Rouse
segment size is close to the Kuhn segment size [15–17].

3.4. Difference between retardation and relaxation properties

For the chains obeying the Rouse dynamics as well as another type of molecular dynamics
such as reptation, the viscoelastic properties characterizing the creep and relaxation processes
are equivalent in the sense that the chain conformation evolving through the given dynamics is
averaged in these properties (and these properties are mutually related through equation (1)).
However, the chain has different conformations during the creep and relaxation processes
because of the constant stress requirement in the former process, as fully discussed in the
early part of this article. A corresponding difference is noted for the viscoelastic properties
characterizing these processes. This section discusses this difference for some simple
examples.

3.4.1. Recoverable compliance for Rouse and Doi–Edwards models. The Doi–Edwards (DE)
model based on the tube concept has been frequently utilized for entangled polymers [4–6].
Since this model considers just the reptative diffusion along the chain backbone and does
not incorporate other important mechanisms (such as the contour length fluctuation [18–21]
and constraint release [20–23]), its prediction does not quantitatively agree with experiments.
Nevertheless, the DE model captures fundamental physics in the entanglement dynamics and
is well established as the starting model for entangled polymers. We here compare the creep
behaviour for the DE and the Rouse models.
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The relaxation modulus of the DE model is given by [4–6]

G(t) = G N

∞∑
p=1

8

(2 p − 1)2π2
exp

(
−(2 p − 1)2t

τrep

)
(61)

where G N and τrep are the plateau modulus and pure reptation time, respectively. Pearson
and co-workers [24] analytically calculated the compliance J (t) corresponding to this G(t) by
conducting Laplace inversion of the convolution relationship (equation (1)). Their result can
be summarized as

Jr(t) = 1

G N
+

2

G N

∞∑
p=1

1

θ2
p

{
1 − exp

(
− t

λp

)}
with λp = π2τrep

4θ2
p

for DE model (62)

where θp is the numerical coefficient determined from equation (28). That is, the coefficients
θp determining the retardation times λp and retardation intensities 2/G Nθ2

p of the DE model
are identical to those for the Rouse model. Thus, the relative distributions of the retardation
modes are identical for the two models; see equations (27) and (62).

The DE model has a non-zero Jr(0) value (=1/G N) while the continuous Rouse model
has Jr(0) = 0 (see equation (27)). However, this difference is not essential because the
discrete Rouse model has Jr(0) > 0. From this point of view, the Jr(t) of the two models are
surprisingly similar to each other, despite the fact that the relaxation modulus of the Rouse
model, G(t) = νkBT

∑∞
p=1 exp(−t p2/τR) in the continuous limit, is significantly different

from G(t) for the DE model.
The Rouse dynamics allows the viscoelastic relaxation to occur at any part of the chain,

while the reptation dynamics allows the relaxation to occur only from the chain ends. This
difference is clearly reflected in G(t) for the DE and Rouse models but not so clearly in the
non-instantaneous part of Jr(t). This fact demonstrates the difference between the creep and
relaxation properties.

3.4.2. Combination of Rouse and reptation mechanisms [14]. The difference between the
creep and relaxation properties can be more clearly tested for a chain relaxing through multiple
mechanisms. As the simplest test, we here examine G(t) and Jr(t) for a chain relaxing through
the reptation and Rouse mechanisms.

This chain is assumed to have the relaxation modulus given by

G(t) = 2B
∞∑

p=1

exp

(
− p2t

τR

)
+ G N

∞∑
p=1

8

(2 p − 1)2π2
exp

(
−(2 p − 1)2t

τrep

)
. (63)

Here, 2B is a parameter representing the relaxation intensity for the Rouse process.
Considering the importance of the contour length fluctuation (CLF) for real chains composed
of a finite number (Z) of entanglement segments of the molecular weight Me (not the Rouse
segments), we assume the Rouse process to occur along the whole backbone of the chain (not
only within the entanglement segment). For this case, the ratio of the longest viscoelastic
Rouse relaxation time τR(∝Z 2) to the pure reptation time τrep is given by [4–6]

rτ = τR

τrep
= 1

6Z
. (64)

In a refined molecular model for entangled chains such as the Milner–McLeish (MM)
model [21], the reptation time and relaxation mode distribution change with the CLF
contribution. In addition, the MM model treats separately two series of the Rouse relaxation
modes within the entanglement segment and along the whole backbone of the chain. However,
these refinements are not considered in the simple calculation presented here, because the
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purpose of this calculation is to examine the difference between the creep and relaxation
properties. Qualitative features of the calculated results would not be affected by these
refinements. (If the CLF mode is neglected in the MM model, G(t) for this model becomes
very similar to that given by equation (63).)

The intensity parameter for the pure Rouse mechanism is given by 2B = νkBT , and the
plateau modulus is (experimentally) expressed as G N = ZνkBT [3–5]. The combination of
the Rouse and reptation mechanisms would not significantly change the values of 2B . Thus,
for simplicity and definiteness, we utilize the neat Rouse parameter 2B = νkBT = G N/Z in
the following calculation.

For G(t) given by equation (63), the recoverable compliance Jr(t) can be analytically
obtained through equation (1) with the Laplace inversion method. The result is summarized
as [14]

Jr(t) = ϕ0 −
∞∑

p=1

ϕp exp

(
− t

�′
p

)
with �′

p = π2τrep

α2
p

(pth retardation time) (65)

with

ϕ0 = 2(3G N + 8Br2
τ )

5(G N + 4Brτ )2
(66)

and

ϕp = 2

G N tan2(αp/2) + Bα2
prτ − G N

{
tan(αp/2)

(αp/2)
− 1

}
{1 − αp

√
rτ cot(αp

√
rτ )}

. (67)

The coefficients αp appearing in equations (65) and (67) are determined from

tan(αp/2)

(αp/2)
= 1 +

B

G N
{αp

√
rτ cot(αp

√
rτ ) − 1} (68)

with rτ being the relaxation time ratio specified by equation (64).
In the limit of B → 0, equation (68) reduces to equation (28) with θp = αp/2 and Jr(t)

coincides with the reptation compliance (equation (62)). In the other limit of G N → 0 while
keeping B > 0, equation (68) reduces to equation (28) with θp = αp

√
rτ and Jr(t) coincides

with the Rouse compliance (equation (27)).
In figure 11, a normalized recoverable compliance Jr(t)G N calculated from

equations (65)–(67) for Z = 10, 20, and 50 is plotted against a normalized time t/λ1 (unfilled
symbols). For comparison, Jr(t)G N for the pure reptation dynamics (equation (62)) is shown
with the solid curve. The dotted curves indicate Jr(t)G N (equation (27)) obtained for the
Rouse chain having Z and τR identical to those utilized in equation (63). For the chain
obeying equation (63), these dotted curves show the intrinsic Rouse behaviour that should be
observed in the absence of the reptation contribution.

As can be noted in figure 11, the normalized compliance Jr(t)G N for Z = 10–50 (unfilled
symbols) exhibits a crossover from the intrinsic Rouse behaviour (dotted curves) to the pure
reptation behaviour (solid curve) with increasing t because the Rouse mechanism (having
G(0) = ∞) dominates the creep behaviour at short t but this mechanism is overwhelmed
by the slower reptation mechanism at long t . More importantly, a characteristic time for this
approach to the reptation-dominant steady state deviates from the intrinsic, longest Rouse
retardation time λR (at which the dotted curves level off).

In order to elucidate the origin of this deviation, it is useful to remember how the stresses
σ [1] and σ [2] sustained by short and long Rouse chains in the blends evolve with time during
the creep process (figure 6(a)): the short chain is mobile compared to the long chain and thus
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Figure 11. Plots of normalized recoverable compliance G N Jr(t) of the chain relaxing through
Rouse and reptation mechanisms against normalized time t/λ1 (unfilled symbols). The solid curve
indicates G N Jr(t) for the pure reptation dynamics, and the dotted curves show the intrinsic Rouse
behaviour of the chain.

forced to compensate the slow growth of σ [2] of the latter under the constant stress requirement.
For this reason, σ [1] and σ [2] change in a synchronized way, and the intrinsic longest retardation
time of the short chain is not resolved in the creep behaviour of the blend.

Equation (63) indicates that the stresses σR and σrep due to the Rouse and reptation
mechanisms are additive. Thus, the Rouse mechanism being faster than the reptation
mechanism plays a role similar to that of the short chain in the blend, and its σR is forced to
compensate the slow growth of σrep. For this reason, the approach to the reptation-dominated
steady state does not occur at the intrinsic λR, as observed in figure 11.

This situation can be even more clearly observed for a retardation spectrum L(λ) defined
by

Jr(t) =
∫ ∞

−∞
L(λ)

{
1 − exp

(
− t

λ

)}
d ln λ. (69)

For Jr(t) given by equation (65) as well as for Jr(t) for pure Rouse and reptation mechanisms
(equations (27) and (62)), the spectra are analytically expressed as sums of delta functions,
L(λ) = ∑∞

p=1 Ipδ(ln λ − ln λp). The plot of this L(λ) against log λ looks like a crowded set
of spikes, and characteristic features of the spectra are not so easily observed in this plot. For
easy observation, we integrated the retardation intensities Ip in a given logarithmic interval of
λ, � log λ = 0.2, to evaluate smoothed (smeared) spectra. These spectra correspond to those
usually evaluated from experimental data [3].

In figure 12, the normalized spectra L(λ)G N thus obtained for Z = 10–50 are double-
logarithmically plotted against a normalized retardation time λ/τrep. The unfilled circles
represent L(λ) for the combined Rouse–reptation mechanism (equation (63)), and filled
squares and triangles denote LR(λ) and L rep(λ) for the pure Rouse and reptation mechanisms,
respectively. The solid and dotted arrows denote the longest retardation times λR and λrep of
the intrinsic Rouse and reptation mechanisms, respectively. The spectrum L (circles) clearly
exhibits the crossover from the Rouse spectrum (squares) to the reptation spectrum (triangles)
with increasing λ. However, no peak of L is observed at λ ∼= λR, confirming the effect of the
interplay of the Rouse and reptation mechanisms discussed above.

Furthermore, we also note that L exhibits a broad peak at λpeak = 10−4±0.5τrep and
10−5.5±0.5τrep for Z = 20 and 50, respectively; see the middle and bottom panels of figure 12.
Neither the Rouse nor the reptation mechanism (the constituent mechanisms in the chain
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Figure 12. Normalized retardation spectra L(λ)G N corresponding to the recoverable compliance
shown in figure 11.

dynamics) gives a motional mode of specific meaning at these λpeak, and the peak of L
results from the interplay of these mechanisms under the constant stress requirement. We
may give a molecular interpretation to this peak on the basis of the knowledge about the
constituent mechanisms: the Rouse relaxation time for the entanglement segment is given
by τe = τR/Z 2 = τrep/6Z 3. The above λpeak values are reasonably close to the τe values
(=10−4.68τrep and 10−5.88τrep for Z = 20 and 50) and the peak of L can be qualitatively related
to equilibration of the Rouse motion within respective entanglement segments (and a crossover
to the reptative motion utilizing these segments as the motional unit).

For the chain relaxing through multiple mechanisms, the above result demonstrates that
the peak of the retardation spectrum L is hard to interpret on the molecular basis if the details
of these mechanisms are not known. Similarly, for materials obeying stress additivity, a peak of
L is often observed experimentally but its molecular interpretation is not so easily established
unless the interplay of the constituent mechanisms is specified. In contrast, a peak of the
relaxation spectrum H of such materials is not affected by this interplay and can be interpreted
more directly. This is an important difference between the retardation and relaxation properties.
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Since the stress of polymer chains in the liquid state is directly related to their orientational
anisotropy except at very short timescales [5, 6, 15–17], the polymeric materials obey stress
additivity by nature. No simple strain additivity is found for these materials. In this sense,
a detailed viscoelastic investigation of molecular dynamics in polymers is to be made for
relaxation properties rather than for retardation properties, although these properties are
equivalent on the phenomenological basis. This fact may provide us with a clue for resolving
recent problems related to the validity of the stress additivity or strain additivity in the
viscoelastic analysis of the polymer dynamics in the Rouse-to-rubbery zone [25–27] as well
as in the vicinity of the glassy zone [25, 28, 29].

4. Concluding remarks

The Rouse model is one of the most important models in the field of polymer dynamics, but its
conformational changes during the creep/recovery processes had not been analysed previously.
For completeness of the analysis, we have analytically calculated the orientational anisotropy
for the monodisperse Rouse chains and their blends. The calculation reveals that each Rouse
eigenmode during these processes has a distribution in the retardation times and each retardation
mode of the recoverable compliance is contributed from all eigenmodes because of the interplay
among the eigenmodes of different orders (and for different chains in the blends) under the
constant stress condition. This feature is quite different from that under rate-controlled flow
where each eigenmode behaves independently. Furthermore, the calculation indicates that
the Rouse chains exhibit affine deformation on sudden imposition/removal of the stress and
the magnitude of this deformation, reflected in the instantaneous value of the recoverable
compliance, is inversely proportional to the number of bond vectors per chain. These features
can be tested from rheo-optical creep/recovery experiments for the real non-entangled chains
having appropriate labels, for example, from dichroism experiments for chains having partial
deuterium labels. Unfortunately, such a rheo-optical creep/recovery experiment has not been
conducted so far. The experiment is now being attempted in order to test the above Rouse
features under the constant stress condition.

On the basis of the above results, a difference between the creep and relaxation properties
is also discussed for chains obeying multiple relaxation mechanisms (Rouse and reptation
mechanisms). For polymers intrinsically obeying stress additivity (except at very short t), it
is suggested that a detailed viscoelastic investigation of molecular dynamics should be made
for relaxation properties rather than for retardation properties, although these properties are
equivalent on a phenomenological basis.

Appendix A. Solution of equation (24)

For the Laplace transformation of the strain, �(s) = ∫ ∞
0 dt γ (t) exp(−st), equation (24) is

rewritten as

σ0

s
= νkBT

∞∑
p=1

s�(s)

s + p2/τR
. (A.1)

A relationship deduced from the initial condition for creep (γ (0) = 0),
∫ ∞

0 dt γ̇ (t) exp(−st) =
s�(s), has been utilized in the derivation of equation (A.1).

With the aid of a mathematical formula,
∑∞

p=1(x2 + p2)−1 = (π/2x) coth(πx) − x−2/2,
equation (A.1) is rewritten as a simple expression for �(s) in terms of the transformation
variable s,
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�(s) = 2σ0

νkBT

1

s{π√
sτR coth(π

√
sτR) − 1} . (A.2)

As noted from the asymptotic behaviour, [s�(s)]s→0 = ∞ and [s2�(s)]s→0 = 6σ0/π
2τRνkBT ,

this �(s) has a second-order pole at s = 0. Thus, �(s) is divided into the second-order pole
part {6σ0/π

2τRνkBT }s−2 and the remaining first-order pole part �R(s) as

�(s) =
(

6σ0

π2νkBT τR

)
1

s2
+ �R(s) (A.3)

with

�R(s) =
(

2σ0
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)
3 + π2sτR − 3π

√
sτR coth(π

√
sτR)

π2s2τR{π√
sτR coth(π

√
sτR) − 1} . (A.4)

�R(s) has first-order poles at s = 0 (with a residue [s�(s)]s→0 = 2/5) and at
s = sp = −θ2

p/π
2τR (with a residue [(s − sp)�(s)]s→sp = −4/θ2

p), where θp are numerical
coefficients determined from

tan θp = θp (pπ < θp < (p + 1/2)π and θp → (p + 1/2)π for p → ∞). (A.5)

These coefficients satisfy summation rules,
∑∞

q=1 θ−2
q = 1/10 and

∑∞
q=1{p2 − (θq/π)2}−1 =

−3/2 p2. Thus, the Laplace inversion of equation (A.3) gives

γ (t) = σ0

νkBT

[
6t

π2τR
+

∞∑
p=1

4

θ2
p

{
1 − exp

(
− t

λp

)}]
with λp = π2τR

θ2
p

. (A.6)

Appendix B. Solution of equation (32)

For the Laplace transformation of the shear rate, �′(s) = ∫ ∞
0 dt γ̇ (t) exp(−st), equation (32)

is rewritten as

0 =
∞∑

p=1

6σ0

p2π2

1

s + p2/τR
+ νkBT

∞∑
p=1

�′(s)
s + p2/τR

. (B.1)

With the aid of a mathematical formula,
∑∞

p=1{x2 + p2}−1 = (π/2x) coth(πx) − x−2/2,
equation (B.1) is rearranged as

�′(s) = −
(

2σ0

νkBT

)
3 + π2sτR − 3π

√
sτR coth(π

√
sτR)

π2sτR{π√
sτR coth(π

√
sτR) − 1} . (B.2)

Analysis of poles of this �′ (similar to that in appendix A) enables the Laplace inversion
of equation (B.2) to give

γ̇ (t) = − 4σ0

νkBT π2τR

∞∑
p=1

exp

(
− t

λp

)
with λp = π2τR

θ2
p

(B.3)

with the coefficients θp being determined from equation (A.5).

Appendix C. Affine deformation and effective strain for the bond vector

For the Rouse chain during the creep/recovery processes in the linear viscoelastic limit, no
correlation exists between the z component and x and y components of its bond vector u(n, t)
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at any time t . For this case, the bond vector can be expressed in terms of a reference vector
u∗(n) as

u(n, t) = D(γe(n)) · u∗(n) with D(γe(n)) =
[ 1 γe(n) 0

0 1 0
0 0 1

]
. (C.1)

D(γe(n)) is a shear displacement tensor corresponding to an effective shear strain γe(n)

defined for u(n, t); γe(n) � 1 and 〈{u∗
α(n)}2〉/a2 = 1/3 + O(γ 2

e ) (α = x, y, z) in the
linear viscoelastic limit. From equation (C.1), the orientation function of the nth bond vector,
S(n, t) = a−2〈ux(n, t)uy(n, t)〉, is related to the function defined for the reference vector,
S∗(n) = a−2〈u∗

x(n)u∗
y(n)〉, as

S(n, t) = 1

a2
〈(D · u∗)x(D · u∗)y〉 = S∗(n) +

γe(n)

3
. (C.2)

Here, we have neglected terms of the order of γ 2
e .

The affine shear deformation of the chain is defined as a deformation associated with n-
independent effective strain (γe(n) = γe). If u∗(n) coincides with the isotropically distributed
nth bond vector ueq(n) at equilibrium, S∗(n) = 0 and the affine deformation results in n-
independent S(n, t) (=γe/3) associated with no cross-correlation (〈ux(n, t)uy(m, t)〉 = 0
for n �= m). The n-independence of the S(n, t) value (=σ0/3G(0)) and the lack of cross-
correlation are found for the four-bead and three-bead chains as well as for the continuous
chain with N → ∞ at the onset of creep (at t = 0). Thus, at the onset of creep, the chain
is affinely deformed from the isotropic, equilibrium state by the strain γσ = σ0/G(0). On
this deformation (without the cross-correlation), the orientation function SR of the end-to-end
vector defined by equation (52) is written as SR(0) = S(n, 0) = σ0/3G(0) = γσ /3. This SR(0)

value is found for the chains at the onset of creep (see equations (53) and (58)), confirming the
affine deformation explained above.

If the reference vectors, u∗(n) with 1 � n � N − 1, are non-uniformly oriented, the
orientation function S∗(n) defined for these vectors is non-zero and dependent on n. For this
case, we note from equation (C.2) that the affine deformation of these reference vectors gives
an n-independent difference, S(n, t)− S∗(n) = γe/3. For the four-bead and three-bead chains
as well as for the continuous chain, this n-independent difference is found at t = 0 for the
creep recovery, [S(n, 0)]recovery − [S(n,∞)]creep = −σ0/3G(0) = −γσ /3. Thus, at the onset
of recovery, these chains are affinely deformed from the non-uniformly (non-affinely) oriented
flowing state by the strain of −γσ .

On this affine deformation, the orientation function SR(0) of the end-to-end vector R(0)

is related to the function defined for the reference vectors,

S∗
R = 1

N − 1

{
N−1∑
n=1

S∗(n) +
N−1∑

n,m( �=n)=1

S∗
c (n, m)

}
with S∗

c (n, m) = a−2〈u∗
x(n)u∗

y(m)〉n �=m,

as

SR(0) = 1

N − 1

[
N−1∑
n=1

S(n, 0) +
1

a2

N−1∑
n,m( �=n)=1

〈{u∗
x(n) + γeu∗

y(n)}u∗
y(m)〉

]

= 1

N − 1

[
N−1∑
n=1

{
S∗(n) +

γe

3

}
+

N−1∑
n,m( �=n)=1

{
S∗

c (n, m) +
γe

a2
〈u∗

y(n)u∗
y(m)〉

}]

= S∗
R +

γe

3
+

1

N − 1

γe

a2

N−1∑
n,m( �=n)=1

〈u∗
y(n)u∗

y(m)〉. (C.3)
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The last term in equation (C.3) is of the order of γ 2
e (because 〈u∗

y(n)u∗
y(m)〉n �=m ∼ O(γe))

and is overwhelmed by the γe/3 term. Thus, equation (C.3) gives an n-independent difference
SR(0)−S∗

R that coincides with S(n, t)−S∗(n) = γe/3. For the four-bead and three-bead chains
as well as for the continuous chain, this n-independence of the difference is found at the onset of
the creep recovery, [SR(0)]recovery−[SR(∞)]creep = [S(n, 0)]recovery−[S(n,∞)]creep = −γσ/3,
confirming the affine deformation from the steadily flowing state.
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